THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH3070 Introduction to Topology 2017-2018 Tutorial Classwork 9

- 1. Prove that \mathbb{S}^1 is not a retract of $\mathbb{D}^2 = \{z \in \mathbb{C} \mid |z| \le 1\}.$
- 2. Consider the torus $\mathbb{S}^1 \times \mathbb{S}^1$. Show that the circle $\mathbb{S}^1 \times \{1\}$ is not a deformation retract of the torus.
- 3. (a) Denote the n-dimensional disk by $\mathbb{D}^n = \{\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + x_2^2 + \dots + x_n^2 \leq 1\}.$ Show that \mathbb{S}^{n-1} is a deformation retract of $\mathbb{D}^n \setminus \{0\}.$
 - (b) * Hence, show that \mathbb{D}^2 is not homeomorphic to \mathbb{D}^n for n > 2. (You may assume the fact that for any n > 2 and any $\mathbf{x} \in \mathbb{D}^n$, there exists a homeomorphism $f : \mathbb{D}^n \to \mathbb{D}^n$ which maps the point \mathbf{x} to 0.)